Polar Decomposition for P-adic Symmetric Spaces

نویسنده

  • YVES BENOIST
چکیده

Let G be the group of k-points of a connected reductive k-group and H a symmetric subgroup associated to an involution σ of G. We prove a polar decomposition G = KAH for the symmetric space G/H over any local field k of characteristic not 2. Here K is a compact subset of G and A is a finite union of groups Ai which are the k-points of maximal (k, σ)-split tori, one for each H-conjugacy class. This decomposition is analogous to the well-known polar decomposition G = KAH for a real symmetric space G/H .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LOGARITHMIC DIFFERENTIAL FORMS ON p-ADIC SYMMETRIC SPACES

We give an explicit description in terms of logarithmic differential forms of the isomorphism of P. Schneider and U. Stuhler relating de Rham cohomology of p-adic symmetric spaces to boundary distributions. As an application we prove a Hodgetype decomposition for the de Rham cohomology of varieties over p-adic fields which admit a uniformization by a p-adic symmetric space.

متن کامل

L-functions of symmetric powers of cubic exponential sums

For each positive integer k, we investigate the L-function attached to the k-th symmetric power of the F -crystal associated to the family of cubic exponential sums of x + λx where λ runs over Fp. We explore its rationality, field of definition, degree, trivial factors, functional equation, and Newton polygon. The paper is essentially self-contained, due to the remarkable and attractive nature ...

متن کامل

SUBREPRESENTATION THEOREM FOR p-ADIC SYMMETRIC SPACES

The notion of relative cuspidality for distinguished representations attached to p-adic symmetric spaces is introduced. A characterization of relative cuspidality in terms of Jacquet modules is given and a generalization of Jacquet’s subrepresentation theorem to the relative case (symmetric space case) is established.

متن کامل

SQUARE INTEGRABILITY OF REPRESENTATIONS ON p-ADIC SYMMETRIC SPACES

A symmetric space analogue of Casselman’s criterion for square integrability of representations of a p-adic group is established. It is described in terms of exponents of Jacquet modules along parabolic subgroups associated to the symmetric space.

متن کامل

The Geometry of -adic Symmetric Spaces

1120 NOTICES OF THE AMS VOLUME 42, NUMBER 10 M any of the geometric objects of interest to number theorists arise as quotients of classical symmetric spaces by discrete subgroups of Lie groups. For example, the Riemann surfaces known as “modular curves”, which play a central role in Wiles’s proof of Fermat’s Last Theorem, are the quotients of the upper half plane by certain arithmetically defin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007